NuRadioReco.modules.channelSinewaveSubtraction module
- NuRadioReco.modules.channelSinewaveSubtraction.logger = <NuRadioLogger NuRadioReco.modules.channelSinewaveSubtraction (STATUS)>
This module provides a class for continuous wave (CW) noise filtering using sine subtraction. In contrast to the module channelCWNOtchFilter, which uses a notch filter to remove CW noise.
- class NuRadioReco.modules.channelSinewaveSubtraction.channelSinewaveSubtraction[source]
Bases:
object
Continuous wave (CW) filter module. Uses sine subtraction based on scipy curve_fit.
Methods
begin
([save_filtered_freqs, freq_band])Initialize the CW filter module.
Get the list of identified noise frequencies for each channel.
run
(event, station[, det, peak_prominence])Run the CW filter module on a given event and station.
- begin(save_filtered_freqs: bool = False, freq_band: tuple[float, float] = (0.1, 0.7)) None [source]
Initialize the CW filter module.
- Parameters:
- save_filtered_freqs: bool (default: False)
Flag to save the identified noise frequencies for each channel.
- freq_band: tuple (default: (0.1, 0.7))
Frequency band to calculate baseline RMS of fft spectrum. Used to identify noise peaks. 0.1 to 0.7 GHz is the default for RNO-G, based on bandpass.
- run(event: Event, station: Station, det=None, peak_prominence: float = 4.0) None [source]
Run the CW filter module on a given event and station. Removes all the CW peaks > peak_prominence * RMS.
- Parameters:
- event: `NuRadioReco.framework.event.Event`
Event object to process.
- station: `NuRadioReco.framework.station.Station`
Station object to process.
- det: `NuRadioReco.detector.detector.Detector` (default: None)
Detector object to process.
- peak_prominence: float (default: 4.0)
Threshold for identifying prominent peaks in the FFT spectrum.
- NuRadioReco.modules.channelSinewaveSubtraction.guess_amplitude(wf: ndarray, target_freq: float, sampling_rate: float = 3.2)[source]
Estimate the amplitude of a specific harmonic in the waveform.
- Parameters:
- wf: np.ndarray
Input waveform (1D array).
- target_freq: float
Target frequency (GHz) for which to estimate amplitude.
- sampling_rate: float (default: 3.2)
Sampling rate of the waveform (GHz).
- Returns:
- ampl: float
Estimated amplitude of the target frequency.
- NuRadioReco.modules.channelSinewaveSubtraction.guess_amplitude_iir(wf: ndarray, target_freq: float, sampling_rate: float = 3.2)[source]
Estimate the amplitude of a specific frequency using an IIR filter representation of Goertzel.
- Parameters:
- wf: np.ndarray
Input waveform (1D array).
- target_freq: float
Target frequency (GHz) to analyze.
- sampling_rate: float (default: 3.2)
Sampling rate of the waveform (GHz).
- Returns:
- amplitude: float
Estimated amplitude at the target frequency.
- NuRadioReco.modules.channelSinewaveSubtraction.guess_phase(fft_spec: ndarray, freqs: ndarray, target_freq: float)[source]
Estimate the phase of a specific frequency in the FFT spectrum.
- Parameters:
- fft_spec: np.ndarray
FFT spectrum of the waveform.
- freq: np.ndarray
Frequency array corresponding to the FFT spectrum.
- target_freq: float
Target frequency (GHz) for which to estimate phase.
- sampling_rate: float (default: 3.2)
Sampling rate of the waveform (GHz).
- Returns:
- phase: float
Estimated phase of the target frequency.
- NuRadioReco.modules.channelSinewaveSubtraction.sinewave_subtraction(wf: ndarray, peak_prominence: float = 4.0, sampling_rate: float = 3.2, saved_noise_freqs: list | None = None, freq_band: tuple = (0.1, 0.7))[source]
Perform sine subtraction on a waveform to remove CW noise.
- Parameters:
- wf: np.ndarray
Input waveform (1D array).
- sampling_rate: float (default: 3.2)
Sampling rate of the waveform (GHz).
- peak_prominance: float (default: 6.0)
Threshold for identifying prominent peaks in the FFT spectrum.
- saved_noise_freqs: list (default: None)
A list to store identified noise frequencies for each channel.
- freq_band: tuple (default for RNO-g: (0.1, 0.7))
Frequency band to calculate baseline RMS of fft spectrum. Used to identify noise peaks.
- Returns:
- np.ndarray
Corrected waveform with CW noise removed.
- NuRadioReco.modules.channelSinewaveSubtraction.plot_ft(channel, ax, label=None, plot_kwargs={})[source]
Function to plot real frequency spectrum of given channel
- Parameters:
- channel: `NuRadioReco.framework.channel.Channel`
Channel from which to get trace
- ax: matplotlib.axes
ax on which to plot
- label: string
plotlabel
- plot_kwargs: dict
options for plotting
- NuRadioReco.modules.channelSinewaveSubtraction.plot_trace(channel, ax, label=None, plot_kwargs={})[source]
Function to plot trace of given channel.
- Parameters:
- channel: `NuRadioReco.framework.channel.Channel`
Channel from which to get trace
- ax: matplotlib.axes
ax on which to plot
- fs: float, default = 3.2 Hz
sampling frequency
- label: string
plotlabel
- plot_kwargs: dict
options for plotting