Source code for NuRadioReco.modules.RNO_G.channelGlitchDetector

from NuRadioReco.modules.base.module import register_run
from NuRadioReco.utilities import units
from NuRadioReco.framework.parameters import channelParametersRNOG as chp
from NuRadioReco.framework.event import Event

import numpy as np
import logging
import collections

[docs] class channelGlitchDetector: """ This module detects scrambled data (digitizer "glitches") in the channels. RNO-G data (in particular the RNO-G data recorded with the LAB4D digitizers on the first-generation radiants) is known to have "glitches" in the channels. When a glitch is present in a channel, the 64-sample readout blocks were scrambled by the readout electronics which results in sudden unphyiscal jumps in the signal. These jumps are detected with this module (but not corrected). """ def __init__(self, cut_value=0.0, glitch_fraction_warn_level=0.1, log_level=logging.NOTSET): """ Parameters ---------- cut_value : float This module calculates a test statistic that is sensitive to the presence of digitizer glitches. This parameter marks the critical value at which the test is said to have detected a glitch. This is a free parameter; increasing its value results in a lower false-positive rate (i.e. healthy events are incorrectly marked as glitching), but also a lower true-positive rate (i.e. glitching events are correctly marked as such). The default value of 0.0 is a good starting point. glitch_fraction_warn_level : float Print warning messages at the end of a run if a channel shows glitching in more than a fraction of `glitch_fraction_warn_level` of all events. log_level: enum Set verbosity level of logger. If logging.DEBUG, set mattak to verbose (unless specified in mattak_kwargs). (Default: logging.NOTSET, ie adhere to general log level) """ self.logger = logging.getLogger('NuRadioReco.RNO_G.channelGlitchDetector') self.ts_cut_value = cut_value self.glitch_fraction_warn_level = glitch_fraction_warn_level # Total sampling buffer of the LAB4D: 2048 samples self._lab4d_readout_size = 2048 # Length of a sampling block in the LAB4D: 64 samples self._lab4d_sampling_blocksize = 64
[docs] def begin(self): # Per-run glitching statistics self.events_checked = 0 self.events_glitching_per_channel = collections.defaultdict(int)
[docs] def end(self): # Print glitch statistic summary for ch_id, events_glitching in self.events_glitching_per_channel.items(): glitching_fraction = events_glitching / self.events_checked if glitching_fraction > self.glitch_fraction_warn_level: self.logger.warning(f"Channel {ch_id} shows glitches in {events_glitching} " f"/ {self.events_checked} = {100*glitching_fraction:.2f}% of events!") else: self.logger.info(f"Channel {ch_id} shows glitches in {events_glitching} " f"/ {self.events_checked} = {100*glitching_fraction:.2f}% of events!")
[docs] @register_run() def run(self, event, station, det=None): """ Run over channel traces and sets `channelParameter.glitch`. Parameters ---------- event : `NuRadioReco.framework.event.Event` The event object station : `NuRadioReco.framework.station.Station` The station object det : `NuRadioReco.detector.detector.Detector` (default: None) Detector object, not used! """ def diff_sq(eventdata): """ Returns sum of squared differences of samples across seams of 128-sample chunks. `eventdata`: channel waveform """ block_size = self._lab4d_sampling_blocksize twice_block_size = 2 * block_size runsum = 0.0 for chunk in range(len(eventdata) // twice_block_size - 1): runsum += (eventdata[chunk * twice_block_size + block_size - 1] - eventdata[chunk * twice_block_size + block_size]) ** 2 return np.sum(runsum) def unscramble(trace): """ Applies an unscrambling operation to the passed `trace`. Note: the first and last sampling block are unusable and hence replaced by zeros in the returned waveform. Parameters ---------- `trace`: channel waveform """ readout_size = self._lab4d_readout_size block_size = self._lab4d_sampling_blocksize twice_block_size = 2 * block_size new_trace = np.zeros_like(trace) for i_section in range(len(trace) // block_size): section_start = i_section * block_size section_end = i_section * block_size + block_size if i_section % 2 == 0: new_trace[(section_start + twice_block_size) % readout_size :\ (section_end + twice_block_size) % readout_size] = trace[section_start:section_end] elif i_section > 1: new_trace[(section_start - twice_block_size) % readout_size :\ (section_end - twice_block_size) % readout_size] = trace[section_start:section_end] new_trace[0:block_size] = 0 return new_trace # update event counter self.events_checked += 1 for ch in station.iter_channels(): ch_id = ch.get_id() trace = ch.get_trace() trace_us = unscramble(trace) # glitching test statistic and boolean discriminate glitch_ts = (diff_sq(trace) - diff_sq(trace_us)) / np.var(trace) glitch_disc = glitch_ts > self.ts_cut_value ch.set_parameter(chp.glitch, glitch_disc) ch.set_parameter(chp.glitch_test_statistic, glitch_ts) # update glitching statistics self.events_glitching_per_channel[ch_id] += glitch_disc
[docs] def has_glitch(event_or_station): """ Returns true if any channel in any station has a "glitch". Requires the RNO_G.channelGlitchDetector module to have ran on the event. Parameters ---------- event_or_station : Event or Station The event or station to check for glitches. If an event is given, the first station is used (if multiple stations exist in the event an error is raised). Returns ------- has_glitch : bool True if any channel has a glitch, False otherwise. See Also -------- NuRadioReco.modules.RNO_G.channelGlitchDetector """ if isinstance(event_or_station, Event): # This will throw an error if the event has more than one station station = event_or_station.get_station() else: station = event_or_station for channel in station.iter_channels(): if channel.has_parameter(chp.glitch) and channel.get_parameter(chp.glitch): return True return False