Source code for NuRadioReco.modules.efieldToVoltageConverterPerEfield

import numpy as np
import time
import logging

import NuRadioReco.framework.sim_channel
from NuRadioReco.modules.base.module import register_run
from NuRadioReco.detector import antennapattern
from NuRadioReco.utilities import units, ice, geometryUtilities
from NuRadioReco.utilities import trace_utilities
from NuRadioReco.framework.parameters import electricFieldParameters as efp


[docs]class efieldToVoltageConverterPerEfield(): """ This module applies the antenna response to each electric field individually and stores the resulting voltage traces in the SimStationclass as SimChannel objects """ def __init__(self, log_level=logging.NOTSET): self.__t = 0 self.logger = logging.getLogger('NuRadioReco.efieldToVoltageConverterPerEfield') self.logger.setLevel(log_level) self.antenna_provider = antennapattern.AntennaPatternProvider()
[docs] @register_run() def run(self, evt, station, det): t = time.time() # access simulated efield and high level parameters sim_station = station.get_sim_station() if(len(sim_station.get_electric_fields()) == 0): raise LookupError(f"station {station.get_id()} has no efields") for channel_id in det.get_channel_ids(station.get_id()): # one channel might contain multiple channels to store the signals from multiple ray paths and showers, # so we loop over all simulated channels with the same id, self.logger.debug('channel id {}'.format(channel_id)) for electric_field in sim_station.get_electric_fields_for_channels([channel_id]): sim_channel = NuRadioReco.framework.sim_channel.SimChannel(channel_id, shower_id=electric_field.get_shower_id(), ray_tracing_id=electric_field.get_ray_tracing_solution_id()) ff = electric_field.get_frequencies() efield_fft = electric_field.get_frequency_spectrum() zenith = electric_field[efp.zenith] azimuth = electric_field[efp.azimuth] # get antenna pattern for current channel VEL = trace_utilities.get_efield_antenna_factor(sim_station, ff, [channel_id], det, zenith, azimuth, self.antenna_provider) if VEL is None: # this can happen if there is not signal path to the antenna voltage_fft = np.zeros_like(efield_fft[1]) # set voltage trace to zeros else: # Apply antenna response to electric field VEL = VEL[0] # we only requested the VEL for one channel, so selecting it voltage_fft = np.sum(VEL * np.array([efield_fft[1], efield_fft[2]]), axis=0) # Remove DC offset voltage_fft[np.where(ff < 5 * units.MHz)] = 0. if sim_station.is_cosmic_ray(): site = det.get_site(station.get_id()) antenna_position = det.get_relative_position(station.get_id(), channel_id) - electric_field.get_position() if zenith > 90 * units.deg: # signal is coming from below, so we take IOR of ice index_of_refraction = ice.get_refractive_index(antenna_position[2], site) else: # signal is coming from above, so we take IOR of air index_of_refraction = ice.get_refractive_index(1, site) # For cosmic ray events, we only have one electric field for all channels, so we have to account # for the difference in signal travel between channels. IMPORTANT: This is only accurate # if all channels have the same z coordinate travel_time_shift = geometryUtilities.get_time_delay_from_direction( zenith, azimuth, antenna_position, index_of_refraction ) else: travel_time_shift = 0 # set the trace to zeros sim_channel.set_frequency_spectrum(voltage_fft, electric_field.get_sampling_rate()) sim_channel.set_trace_start_time(electric_field.get_trace_start_time() + travel_time_shift) sim_station.add_channel(sim_channel) self.__t += time.time() - t
[docs] def end(self): from datetime import timedelta self.logger.setLevel(logging.INFO) dt = timedelta(seconds=self.__t) self.logger.info("total time used by this module is {}".format(dt)) return dt