Source code for NuRadioReco.utilities.diodeSimulator


from NuRadioReco.modules.channelGenericNoiseAdder import channelGenericNoiseAdder
from NuRadioReco.utilities import units, fft
import NuRadioReco.framework.channel

import numpy as np
import logging
import scipy.signal

logger = logging.getLogger('NuRadioReco.diodeSimulator')


[docs] class diodeSimulator: def __init__(self, output_passband=(None, None)): """ Calculate a signal as processed by the tunnel diode. The given signal is convolved with the tunnel diodde response as in AraSim. Parameters ---------- output_passband: (float, float) tuple Frequencies for a 6th-order Butterworth filter to be applied after the diode filtering. If a lowpass filter is needed, please pass a (None, float) tuple as parameter. """ logger.info("This module does not contain cutting the trace to ARA specific parameters.") logger.info("The user should take care of the appropriate noise rate and trace window.") self._output_passband = output_passband # Tunnel diode response functions pulled from arasim # RL (Robert Lahmann) Sept 3, 2018: this is not documented in the arasim code, but it seems most # logical to assume that the units of the two middle parameters are seconds and that the # other parameters are unitless _td_args = { 'down1': (-0.8, 15e-9 * units.s, 2.3e-9 * units.s, 0), 'down2': (-0.2, 15e-9 * units.s, 4e-9 * units.s, 0), 'up': (1, 18e-9 * units.s, 7e-9 * units.s, 1e9) } # Set td_args['up'][0] based on the other args, like in arasim _td_args['up'] = (-np.sqrt(2 * np.pi) * (_td_args['down1'][0] * _td_args['down1'][2] + _td_args['down2'][0] * _td_args['down2'][2]) / (2e18 * _td_args['up'][2] ** 3),) + _td_args['up'][1:] # Set "down" and "up" functions as in arasim @classmethod def _td_fdown1(cls, x): return (cls._td_args['down1'][3] + cls._td_args['down1'][0] * np.exp(-(x - cls._td_args['down1'][1]) ** 2 / (2 * cls._td_args['down1'][2] ** 2))) @classmethod def _td_fdown2(cls, x): return (cls._td_args['down2'][3] + cls._td_args['down2'][0] * np.exp(-(x - cls._td_args['down2'][1]) ** 2 / (2 * cls._td_args['down2'][2] ** 2))) @classmethod def _td_fup(cls, x): return (cls._td_args['up'][0] * (cls._td_args['up'][3] * (x - cls._td_args['up'][1])) ** 2 * np.exp(-(x - cls._td_args['up'][1]) / cls._td_args['up'][2]))
[docs] def tunnel_diode(self, channel): """ Calculate a signal as processed by the tunnel diode. The given signal is convolved with the tunnel diode response as in AraSim. The diode model used in this module returns a dimensionless power trace, where the antenna resistance is only a normalisation for the final voltage. That's why the antenna resistance has been fixed to a value of 8.5 ohms. Parameters ---------- channel: Channel Signal to be processed by the tunnel diode. Returns ------- trace_after_tunnel_diode: array Signal output of the tunnel diode for the input `channel`. Careful! This trace is dimensionless and comes from a convolution of the power with the diode response. """ t_max = 1e-7 * units.s antenna_resistance = 8.5 * units.ohm n_pts = int(t_max * channel.get_sampling_rate()) times = np.linspace(0, t_max, n_pts + 1) diode_resp = self._td_fdown1(times) + self._td_fdown2(times) t_slice = times > self._td_args['up'][1] diode_resp[t_slice] += self._td_fup(times[t_slice]) conv = scipy.signal.convolve( channel.get_trace() ** 2 / antenna_resistance, diode_resp, mode='full') # conv multiplied by dt so that the amplitude stays constant for # varying dts (determined emperically, see ARVZAskaryanSignal comments) # Setting output trace_after_tunnel_diode = conv / channel.get_sampling_rate() trace_after_tunnel_diode = trace_after_tunnel_diode[:channel.get_trace().shape[0]] # We filter the output if the band is specified if self._output_passband != (None, None): sampling_rate = channel.get_sampling_rate() trace_spectrum = fft.time2freq(trace_after_tunnel_diode, sampling_rate) frequencies = np.linspace(0, sampling_rate / 2, len(trace_spectrum)) if self._output_passband[0] is None: b, a = scipy.signal.butter(6, self._output_passband[1], 'lowpass', analog=True) else: b, a = scipy.signal.butter(6, self._output_passband, 'bandpass', analog=True) w, h = scipy.signal.freqs(b, a, frequencies) trace_after_tunnel_diode = fft.freq2time(h * trace_spectrum, sampling_rate) return trace_after_tunnel_diode
[docs] def calculate_noise_parameters(self, sampling_rate=1 * units.GHz, min_freq=50 * units.MHz, max_freq=1 * units.GHz, amplitude=10 * units.microvolt, type='rayleigh', n_tries=10000, n_samples=10000): """ Calculates the mean and the standard deviation for the diode-filtered noise. Parameters ---------- sampling_rate: float Sampling rate min_freq: float Minimum frequency of the bandwidth max_freq: float Maximum frequency of the bandwidth amplitude: float Voltage amplitude (RMS) for the noise type: string Noise type n_tries: int Number of times the calculation is carried out, to get proper averages for the mean and the standard deviation. n_samples: int Number of samples for each individual noise trace Returns ------- power_mean: float Mean of the diode-filtered noise power_std: float Standard deviation of the diode-filtered noise """ power_mean_list = [] power_std_list = [] for i_try in range(n_tries): noise = NuRadioReco.framework.channel.Channel(0) long_noise = channelGenericNoiseAdder().bandlimited_noise( min_freq=min_freq, max_freq=max_freq, n_samples=n_samples, sampling_rate=sampling_rate, amplitude=amplitude, type=type ) noise.set_trace(long_noise, sampling_rate) power_noise = self.tunnel_diode(noise) power_mean_list.append(np.mean(power_noise)) power_std_list.append(np.std(power_noise)) power_mean = np.mean(power_mean_list) power_std = np.mean(power_std_list) return power_mean, power_std
[docs] def end(self): pass
[docs] def get_window_around_maximum(station, diode=None, triggered_channels=None, ratio=0.01, edge=20 * units.ns): """ This function filters the signal using a diode model and calculates the times around the filtered maximum where the signal is the ratio parameter times the maximum. Then, it creates a time window by substracting and adding the edge parameter to these times. This function is useful for reducing the probability of noise-triggered events while using the envelope phased array, although it can also be applied to the standard phased array. Parameters ---------- station: NuRadioReco station Station containing the information on the detector diode: diodeSimulator or None Diode model to be applied. If None, a diode with an output 200 MHz low-pass filter is chosen triggered_channels: array of integers Channels used for the trigger, and also for creating the window ratio: float Cut parameter edge: float Times to be sustracted from the points defined by the ratio cut to create the window Returns ------- (left_time, right_time): (float, float) tuple Tuple containing the edges of the time window """ if diode is None: diode_passband = (None, 200 * units.MHz) diode = diodeSimulator(diode_passband) left_times = [] right_times = [] if (triggered_channels is None): triggered_channels = [channel._id for channel in station.iter_channels()] for channel in station.iter_channels(): # loop over all channels (i.e. antennas) of the station if channel.get_id() not in triggered_channels: continue times = channel.get_times() trace = diode.tunnel_diode(channel) trace_max = np.max(np.max(trace)) argmax = np.argmax(trace) argmin = np.argmin(trace) if (argmin == len(trace) - 1): argmin = len(trace) - 2 if (argmin == argmax): if (argmin + 5 < len(trace)): argmax = argmin + 5 else: argmax = len(trace) - 1 if (argmin == 0): argmin = 1 left_bin = argmin - np.argmin(np.abs(trace[0:argmin][::-1] + ratio * trace_max)) left_times.append(times[left_bin]) right_bin = argmax + np.argmin(np.abs(trace[argmax:None] - ratio * trace_max)) right_times.append(times[right_bin]) left_time = np.min(left_times) - edge right_time = np.max(right_times) + edge return (left_time, right_time)